• Что можно приготовить из кальмаров: быстро и вкусно

    Ведущее место среди органических элементов организма занимают белки. Они поступают в организм с пищей. На их долю приходится более 50% сухой массы клетки или 15-20% сырой массы тканей.

    Функции белков

    Белки выполняют ряд важнейших биологических функций:

    1. Пластическая или структурная . Белки входят в состав всех клеточных и межклеточных структур. Особенно велика потребность в белке в периоды роста, беременности, выздоровления после тяжелых заболеваний. В пищеварительном тракте белки расщепляются до аминокислот и простейших полипептидов. В дальнейшем из них клетками различных тканей и органов (в частности печени), синтезируются специфические белки, которые используются для восстановления разрушенных и роста новых клеток.

    В организме постоянно происходит распад и синтез веществ, поэтому белки организма не находятся в статическом состоянии. Процессы обновления белков в различных тканях имеют неодинаковую скорость. С наибольшей скоростью обновляются белки печени, слизистой оболочки кишечника, а также других внутренних органов и плазмы крови. Медленнее обновляются белки, входящие в состав клеток мозга, сердца, половых желез и еще медленнее – белки мышц, кожи и особенно опорных тканей (сухожилий, костей и хрящей).

    2. Двигательная . Все движения обеспечиваются взаимодействием сократительных белков актина и миозина.

    3. Ферментативная . Белки регулируют скорость биохимических реакций в процессе дыхания, пищеварения, выделения и т.д.

    4. Защитная . Иммунные белки плазмы крови (γ-глобулины) и факторы гемостаза участвуют в важнейших защитных реакциях организма.

    5. Энергетическая . При окислении 1 грамма белка аккумулируется 16,7 кДж энергии. Однако в качестве энергетического материала белки используются в крайнем случае. Эта функция белков особенно возрастает во время стрессорных реакций.

    6. Обеспечивают онкотическое давление за счет чего, принимают участие в регуляции вводно-солевого баланса организма.

    7. Входят в состав буферных систем .

    8. Транспортная . Белки транспортируют газы (гемоглобин) гормоны (тиреоидные, тироксин и др.), минеральные вещества (железо, медь, водород), липиды, лекарственные вещества, токсины и др.

    Биологическая ценность аминокислот.

    Белки это полимерами основными структурными компонентами которых являются аминокислоты. Известно около 80 аминокислот из которых только 20 являются основными. Аминокислоты организма делятся на заменимые и незаменимые . К заменимым аминокислотам, которые синтезируются в организме, относится: аланин, цистеин, глутаминовая и аспарагиновая кислота, кислоты тирозин, пролин, серин, глицин условно аргинин и гистидин. Аминокислоты, которые не могут синтезироваться, но обязательно должны поступать с пищей называются незаменимыми. К ним относятся: лейцин, изойлецин, валин, метионин, лизин, треонин, финилаланин, триптофан; условно – аргинин и гистидин. Для нормального обмена белков эти аминокислоты должны обязательно присутствовать в пище.

    В связи с этим белки пищи, содержащие весь необходимый набор аминокислот, в соотношениях обеспечивающих нормальные процессы синтеза называются полноценными . К ним относят преимущественно животные белки, т.к. они способы полностью превращаться в собственные белки организма. Наибольшей биологической ценностью обладают белки яиц, мяса, рыбы, молока. Биологическая ценность растительных белков ниже т.к. часто они не содержат одну или несколько незаменимых аминокислот. Так, неполноценными белками являются желатина , в которой имеются лишь следы цистина и отсутствует триптофан и тирозин; зеин (белок, находящийся в кукурузе), содержащий мало триптофана и лизина; глиадин (белок пшеницы) и гордеин (белок ячменя), содержащие мало лизина.

    Отсутствие хотя бы одной из незаменимых аминокислоты в пище приводит к задержке роста ребенка, к ослаблению организма, тяжелым расстройствам в обмене веществ, снижению иммунитета, нарушению функции желез внутренней секреции и другим заболеваниям. Например, недостаток валина – вызывает расстройство равновесия. Многие аминокислоты являются источником медиаторов ЦНС (гамма-аминомасляная кислота выполняет важную роль в процессах торможения и сна).

    При смешанном питании, когда в пище есть продукты животного и растительного происхождения в организм поступает необходимый для синтеза белков набор аминокислот это особенно важно для растущего организма.

    В сутки в организм взрослого человека должно поступать около 80-100 г белка и обязательно иметь в своем составе не менее 30% белков животного происхождения.

    Потребность организма в белке зависит от пола, возраста, климатического региона и национальности. При физической нагрузке взрослый человек должен получать 100-120 г белка, при тяжелом труде – до 150 г.

    В случае употребления в пищу только продуктов растительного происхождения (вегетарианство) необходимо, чтобы два неполноценных белка, один из которых не содержит одних аминокислот, а другой – других, в сумме могли обеспечить потребности организма.

    Однообразное питание продуктами растительного происхождения у людей вызывает заболевание «квашиоркор». Оно встречается среди населения стран тропического и субтропического пояса Африки, Латинской Америки и Юго-Восточной Азии. Этим заболеванием страдают преимущественно дети в возрасте от 1 года до 5 лет.

    Сложные азотсодержащие биополимеры, мономерами которых служат аминокислоты (органические соединения, содержащие карбоксильную и аминогруппы).

    Их биологическая роль многообразна.

    Белки выполняют в организме пластические, каталитические, гормональные, транспортные и другие функции, а также обеспечивают специфичность.

    Значение белкового компонента питания заключается, прежде всего, в том, что он служит источником аминокислот.

    Аминокислоты делятся на эссенциалъные и неэссенциалъные в зависимости от того, возможно ли их образование в организме из предшественников. К незаменимым аминокислотам относятся гистидин, лейцин, изолейцин, лизин, метионин, фенилаланин, триптофан и валин, а также цистеин и тирозин, синтезируемые соответственно из метионина и фенилаланина.

    9 заменимых аминокислот (аланин, аргинин, аспаргиновая и глутаминовая кислоты, глутамин, глицин, пролин и серии) могут отсутствовать в рационе, так как способны образовываться из других веществ. В организме также существуют аминокислоты, которые продуцируются путем модификации боковых цепей вышеперечисленных (например, компонент коллагена - гидроксипролин - и сократительных белков мышц - 3-метилгистидин).

    Большинство аминокислот имеют изомеры (D- и L-формы), из которых только L-формы входят в состав белков человеческого организма. D-формы могут участвовать в метаболизме, превращаясь в L-формы, однако утилизируются гораздо менее эффективно.

    По химическому строению аминокислоты делятся на двухосновные, двухкислотные и нейтральные с алифатическими и ароматическими боковыми цепями, что имеет важное значение для их транспорта, поскольку каждый класс аминокислот обладает специфическими переносчиками. Аминокислоты с аналогичным строением обычно вступают в сложные, часто конкурентные взаимоотношения.

    Так, ароматические аминокислоты (фенилаланин, тирозин и триптофан) близкородственны между собой. Хотя фенилаланин является незаменимой, а тирозин синтезируемой из него заменимой аминокислотой, наличие тирозина в рационе как будто бы «сберегает» фенилаланин.

    Если фенилаланина недостаточно, или его метаболизм нарушен (например, при дефиците витамина С) - тирозин становится незаменимой аминокислотой. Подобные взаимоотношения характерны и для серосодержащих аминокислот: незаменимой - метионина, и образующегося из него цистеина.

    Приведем другой пример. Триптофан в ходе превращений, для которых необходим витамин В6 (пиридоксин), включается в структуру никотинамидадениндинуклеотид а (НАД) и никотинамидадениндинуклеотидфосфат а (НАДФ) , то есть дублирует роль ниацина. Приблизительно половина обычной потребности в ниацине удовлетворяется за счет триптофана: 1 мг ниацина пищи эквивалентен 60 мг триптофана. Поэтому состояние пеллагры может развиваться не только при недостатке витамина РР в рационе, но и при нехватке триптофана или нарушении его обмена, в том числе вследствие дефицита пиридоксина.

    Аминокислоты также делятся на глюкогенные и кетогенные, в зависимости от того, могут ли они при определенных условиях становиться предшественниками глюкозы или кетоновых тел (табл. 3.1).

    Таблица 3.1. Классификация аминокислот

    Примечания: Г - глюкогенные, К - кетогенные аминокислоты; * - гистидин незаменим у детей до года; ** - «условно-незаменимые» аминокислоты (могут синтезироваться из фенилаланина и метионина).

    Поступление азотсодержащих веществ с пищей происходит в основном за счет белка и, в менее значимых количествах, свободных аминокислот и других соединений. В животной пище основное количество азота содержится в виде белка. В продуктах растительного происхождения большая часть азота представлена небелковыми соединениями, а также содержится множество аминокислот, которые не встречаются в организме человека и зачастую не могут метаболизироваться им.

    Человек не нуждается в поступлении с пищей нуклеиновых кислот. Пуриновые и пиримидиновые основания синтезируются в печени из аминокислот, а избыток этих оснований, поступивший с пищей, выводится в виде мочевой кислоты.

    В синтезе пиримидиновых колец принимает участие витамин В12, для образования пуриновых структур необходима фолиевая кислота. Именно поэтому дефицит этих нутриентов отражается, прежде всего, на органе с высоким уровнем пролиферации, где идет наиболее интенсивный синтез нуклеиновых кислот - кроветворной ткани.

    Обычный (но не оптимальный) ежедневный прием белка у среднестатистического человека составляет приблизительно 100 г. К ним присоединяется примерно 70 г белка, секретируемого в полость желудочно-кишечного тракта. Из этого количества абсорбируется около 160 г. Самим организмом в сутки синтезируется в среднем 240-250 г белка. Такая разница между поступлением и эндогенным преобразованием свидетельствует об активности процессов ресинтеза (рис. 3.1).

    Рис. 3.1. Метаболизм белка (по: Н. N. Munro, М. Munro, 1988, с изменениями).
    Примечания: АК - аминокислоты. У человека с массой тела 62,5 кг содержание общее белка - 10,9 кг (17,5 %), 240 г белка ежедневно синтезируется и распадается. 1 - абсорбция свободных аминокислот и пептидов после переваривания; 2 - поступление аминокислот в печень; 3 - синтез белков печени и плазмы, в том числе альбумина; 4 - катаболизм излишних аминокислот; 5 - распределение аминокислот в состоянии покоя; 6 - поступление в мышцы, поджелудочную железу, эпителиальные клетки; 7 - экскреция азота в различных формах.

    Для здорового человека характерно состояние азотного равновесия, когда потери белка (с мочой, калом, эпидермисом и т.п.) соответствуют его количеству, поступившему с пищей. При преобладании катаболических процессов возникает отрицательный азотный баланс, который характерен для низкого потребления азотсодержащих веществ (низкобелковые рационы, голодание, нарушение абсорбции белка) и многих патологических процессов, вызывающих интенсификацию распада (опухоли, ожоговая болезнь и т.п.).

    При доминировании синтетических процессов количество вводимого азота преобладает над его выведением и возникает положительный азотный баланс, характерный для детей, беременных женщин и реконвалесцентов после тяжелых заболеваний.

    После прохождения энтерального барьера белки поступают в кровь в виде свободных аминокислот. Следует отметить, что клетки слизистой оболочки желудочно-кишечного тракта могут метаболизировать некоторые аминокислоты (в том числе глутаминовую кислоту и аспаргиновую кислоту в аланин).

    Способность энтероцитов видоизменять эти аминокислоты, возможно, позволяет избежать токсического эффекта при их избыточном введении.

    Аминокислоты, как поступившие в кровь при переваривании белка, так и синтезированные в клетках, в крови образуют постоянно обновляющийся свободный пул аминокислот, который составляет около 100 г.

    75% аминокислот, находящихся в системной циркуляции, представлены аминокислотами с ветвящимися цепями (лейцином, изолейцином и валином). Из мышечной ткани в кровоток выделяются аланин, который является основным предшественником синтеза глюкозы, и глутамин. Многие свободные аминокислоты подвергаются трансформации в печени.

    Часть свободного пула инкорпорируется в белки организма и при их катаболизме вновь поступает в кровоток. Другие непосредственно подвергаются катаболическим реакциям. Некоторые свободные аминокислоты используются для синтеза новых азотсодержащих соединений (пурина, креатинина, адреналина) и в дальнейшем деградируют, не возвращаясь в свободный пул, в специфичные продукты распада.

    Печень обеспечивает постоянство содержания различных аминокислот в крови. Она утилизирует примерно 1/3 всех аминокислот, поступающих в организм, что позволяет предотвратить скачки в их концентрации в зависимости от питания.

    Первостепенная роль печени в азотном и других видах обмена обеспечивается ее анатомическим расположением - продукты переваривания попадают по воротной вене непосредственно в этот орган. Кроме того, печень непосредственно связана с экскреторной системой - билиарным трактом, что позволяет выводить некоторые соединения в составе желчи.

    Гепатоциты - единственные клетки, обладающие полным набором ферментов, участвующих в аминокислотном обмене. Здесь выполняются все основные процессы азотного метаболизма: распад аминокислот для выработки энергии и обеспечения глюконеогенеза, образование заменимых аминокислот и нуклеиновых кислот, обезвреживание аммиака и других конечных продуктов. Печень является основным местом деградации большинства незаменимых аминокислот (за исключением аминокислот с ветвящимися цепями).

    Синтез азотсодержащих соединений (белка и нуклеиновых кислот) в печени весьма чувствителен к поступлению их предшественников из пищи. После каждого приема пищи наступает период повышенного внутрипеченочного синтеза белков, в том числе альбумина. Аналогичное усиление синтетических процессов происходит и в мышцах.

    Эти реакции связаны, прежде всего, с действием инсулина, который секретируется в ответ на введение аминокислот и/или глюкозы. Некоторые аминокислоты (аргинин и аминокислоты с ветвящимися цепями) усиливают продукцию инсулина в большей степени, чем остальные. Другие (аспаргин, глицин, серии, цистеин) стимулируют секрецию глюкагона, который усиливает утилизацию аминокислот печенью и воздействует на ферменты глюконеогенеза и аминокислотного катаболизма.

    Благодаря этим механизмам происходит снижение уровня аминокислот в крови после поступления их с пищей. Действие инсулина наиболее выражено для аминокислот, содержащихся в кровотоке в свободном виде (аминокислоты с ветвящимися цепями), и малозначимо для тех, которые транспортируются в связанном (триптофан). Обратное инсулину влияние на белковый метаболизм оказывают глюкокортикостероиды.

    Печень обладает повышенной скоростью синтеза и распада белков, по сравнению с другими тканями организма (кроме поджелудочной железы). Это позволяет ей синтезировать «на экспорт», а также быстро обеспечивать лабильный резерв аминокислот в период недостаточного питания за счет распада собственных белков.

    Особенность внутрипеченочного белкового синтеза заключается в том, что он усиливается под действием гормонов, которые в других тканях производят катаболический эффект. Так, при голодании белки мышц, для обеспечения организма энергией, подвергаются распаду, а в печени одновременно усиливается синтез белков, являющихся ферментами глюконеогенеза и мочевинообразования.

    Прием пищи с избытком белка

    Прием пищи, содержащей избыток белка, приводит к интенсификации синтеза в печени и в мышцах, образованию избыточных количеств альбумина и деградации излишка аминокислот до предшественников глюкозы и липидов. Глюкоза и триглицериды утилизируются как горючее или депонируются, а альбумин становится временным хранилищем аминокислот и средством их транспортировки в периферические ткани.

    При голодании уровень альбумина прогрессивно снижается, а при последующей нормализации поступления белка медленно восстанавливается. Поэтому, хотя альбумин и является показателем белковой недостаточности, он низкочувствителен и не реагирует оперативно на изменения в питании.

    7 из 10 эссенциальных аминокислот деградируют в печени - либо образуя мочевину, либо впоследствии используясь в глюконеогенезе.

    Мочевина преимущественно выделяется с мочой, но часть ее поступает в просвет кишечника, где подвергается уреазному воздействию микрофлоры. Аминокислоты с ветвящимися цепями катаболизируются в основном в почках, мышцах и головном мозге.

    Мышцы синтезируют ежедневно 75 г белка. У среднего человека они содержат 40% от всего белка организма. Хотя белковый метаболизм происходит здесь несколько медленнее, чем в других тканях, мышечный белок представляет собой самый большой эндогенный аминокислотный резерв, который при голодании может использоваться для глюконеогенеза.

    8 отсутствие пищи синтез альбумина и мышечного белка замедляется, но продолжается деградация аминокислот. Поэтому на начальном этапе голодания мышцы теряют аминокислоты, которые идут на энергетические нужды. В дальнейшем организм адаптируется к отсутствию новых поступлений аминокислот (снижается потребность в зависящем от белка глюконеогенезе за счет использования энергетического потенциала кетоновых тел) и потеря белка мускулатуры уменьшается.

    Мышцы являются основной мишенью воздействия инсулина: здесь под его влиянием усиливается поступление аминокислот, увеличивается синтез мышечного белка и снижается распад.

    В процессе превращений в мышцах образуются аланин и глутамин, их условно можно считать транспортными формами азота. Аланин непосредственно из мышц попадает в печень, а глутамин вначале поступает в кишечник, где частично превращается в аланин. Поскольку в печени из аланина происходит синтез глюкозы, частично обеспечивающий мышцу энергией, получающийся кругооборот получил название глюкозо-аланинового цикла.

    Однако это соединение может поступать в организм с высокобелковой пищей и влиять на результаты исследования содержания его в моче. Продукт распада миофибриллярных белков - 3-метилгистидин экскретируется с мочой в течение короткого времени и является достаточно точным показателем скорости распада в мышцах - при мышечном истощении скорость его выхода пропорционально снижается.

    Почки не только выводят конечные продукты азотного распада (мочевину, креатинин и др.), но и являются дополнительным местом ресинтеза глюкозы из аминокислот, а также регулируют образование аммиака, компенсируя избыток ионов водорода в крови.

    Глюконеогенез и функционирование кислотно-щелочной регуляции тесно скоординированы, поскольку субстраты этих процессов появляются при дезаминировании аминокислот: углерод для синтеза глюкозы и азот - для аммиака. Существует даже мнение, что именно производство глюкозы является основной реакцией почек на ацидоз, а образование аммиака происходит вторично.

    Для нервной ткани характерны более высокие концентрации аминокислот, чем в плазме. Это позволяет обеспечить мозг достаточным количеством ароматических аминокислот, являющихся предшественниками нейромедиаторов.

    Некоторые заменимые аминокислоты, такие как глутамат (из которого при участии пиридоксина образуется гамма-аминомасляная кислота (ГАМК)) и аспартат, также обладают влиянием на возбудимость нервной ткани. Их концентрация здесь высока, при этом заменимые аминокислоты способны синтезироваться и на месте.

    Специфическую роль играет триптофан, являющийся предшественником серотонина. Именно с повышением концентрации триптофана (а, следовательно, и серотонина) связана сонливость после еды. Такой эффект особенно выражен при приеме больших количеств триптофана совместно с углеводной пищей.

    Повышенная секреция инсулина снижает уровень в крови аминокислот с ветвящимися цепями, которые при преодолении барьера кровь - мозг обладают конкурентными взаимоотношениями с ароматическими, но в то же время не оказывает влияния на концентрацию связанного с альбумином триптофана. Благодаря подобным эффектам препараты триптофана могут использоваться в психиатрической практике.

    Ограничение ароматических аминокислот в рационе, в связи с их влиянием на центральную нервную систему, имеет профилактическое значение при ведении пациентов с печеночной энцефалопатией.

    Элементные аминокислотные диеты с преимущественным содержанием лейцина, изолейцина, валина и аргинина помогают избежать развития белковой недостаточности у гепатологических больных, и в то же время не приводят к возникновению печеночной комы.

    Основные пластические функции протеиногенных аминокислот перечислены в табл. 3.2.

    Таблица 3.2. Основные функции аминокислот

    Аминокислоты Основные функции
    Алании Предшественник глюконеогенеза, переносчик азота из периферических тканей в печень
    Аргинин Непосредственный предшественник мочевины
    Аспаргановая кислота Предшественник глюконеогенеза, предшественник пиримидина, используется для синтеза мочевины
    Глутаминовая кислота Донор аминогрупп для многих реакций, переносчик азота (проникает через мембраны легче, чем глутамин), источник аммиака, предшественник ГАМК
    Глицин Предшественник пуринов, глутатиона и креатинина, входит в состав гемоглобина и цитохромов, нейротрансмиттер
    Гистидин Предшественник гистамина, донор углерода
    Лизин Предшественник карнитина (транспорт жирных кислот), составляющая коллагена
    Метионин Донор метильных групп для многих синтетических процессов (в том числе холина, пиримидинов), предшественник цистеина, участвует в метаболизме никотиновой кислоты и гистамина
    Фенилаланин | Предшественник тирозина
    Серии Составляющая фосфолипидов, предшественник сфинголипидов, предшественник этаноламина и холина, участвует в синтезе пуринов и пиримидина
    Триптофан Предшественник серотонина и никотинамида
    Тирозин Предшественник катехоламинов, допамина, меланина, тироксина
    Цистеин Предшественник таурина (желчные кислоты), входит в состав глутатиона (антиоксидантная система)

    А.Ю. Барановский

    Что такое белки в целом и какую роль они играют в человеческом организме. Каковы функции белков, что такое азотистый баланс и какова биологическая ценность белков. Это неполный список вопросов затронутых в данной статье.


    Продолжаем серию статей "ОБМЕН УГЛЕВОДОВ В ОРГАНИЗМЕ", "ОБМЕН ЖИРОВ В ОРГАНИЗМЕ" статьей "ОБМЕН БЕЛКОВ В ОРГАНИЗМЕ". Информация рассчитана на широкий круг читателей, при одобрении со стороны читателей серия статей, посвященных физиологии человека, будет продолжена.

    ФУНКЦИИ БЕЛКОВ
    • Пластическая функция белков состоит в обеспечении роста и развития организма за счет процессов биосинтеза. Белки входят в состав всех клеток организма и межтканевых структур.
    • Ферментативная активность белков регулирует скорость протекания биохимических реакций. Белки-ферменты определяют все стороны обмена веществ и образования энергии не только из самих протеинов, но из углеводов и жиров.
    • Защитная функция белков состоит в образовании иммунных белков — антител. Белки способны связывать токсины и яды а также обеспечивать свертываемость крови (гемостаз).
    • Транспортная функция заключается в переносе кислорода и двуокиси углерода эритроцитным белком гемоглобином , а также в связывании и переносе некоторых ионов (железо, медь, водород), лекарственных веществ, токсинов.
    • Энергетическая роль белков обусловлена их способностью освобождать при окислении энергию. Однако при этом пластическая роль белков в метаболизме превосходит их энергетическую , а также пластическую роль других питательных веществ. Особенно велика потребность в белке в периоды роста, беременности, выздоровления после тяжелых заболеваний.
      • В пищеварительном тракте белки расщепляются до аминокислот и простейших полипептидов , из которых в дальнейшем клетками различных тканей и органов, в частности печени , синтезируются специфические для них белки. Синтезированные белки используются для восстановления разрушенных и роста новых клеток, синтеза ферментов и гормонов.
    АЗОТИСТЫЙ БАЛАНС

    Косвенным показателем активности обмена белков служит так называемый азотистый баланс. Азотистым балансом называют разность между количеством азота, поступившего с пищей, и количеством азота, выделяемого из организма в виде конечных метаболитов. При расчетах азотистого баланса исходят из того факта, что в белке содержится около 16% азота, то есть каждые 16 г азота соответствуют 100 г белка.

    • Если количество поступившего азота равно количеству выделенного, то можно говорить об азотистом равновесии . Для поддержания азотистого равновесия в организме требуется как минимум 30-45г животного белка в сутки (физиологический минимум белка ).
    • Состояние, при котором количество поступившего азота превышает выделенное, называют положительным азотистым балансом . Состояние, при котором количество поступившего азота меньше выделенного, называют отрицательным азотистым балансом .
    • Азотистое равновесие у здорового человека является одним из наиболее стабильных метаболических показателей.Уровень азотистого равновесия зависит от условий жизнедеятельности человека, вида совершаемой работы, функционального состояния ЦНС и количества поступаемых в организм жиров и углеводов.
    КОЭФФИЦИЕНТ ИЗНАШИВАНИЯ РУБНЕРА

    Белки органов и тканей нуждаются в постоянном обновлении. Около 400 г белка из 6 кг, составляющих белковый "фонд" организма, ежедневно подвергается катаболизму и должно быть возмещено эквивалентным количеством вновь образованных белков. Минимальное количество белка, постоянно распадающегося в организме, называется коэффициентом изнашивания . Потеря белка у человека массой 70 кг составляет 23 г/сут. Поступление в организм белка в меньшем количестве ведет к отрицательному азотистому балансу, неудовлетворяющему пластические и энергетические потребности организма.

    БИОЛОГИЧЕСКАЯ ЦЕННОСТЬ БЕЛКОВ

    Вне зависимости от видоспецифичности все многообразные белковые структуры содержат в своем составе всего 20 аминокислот . Для нормального метаболизма имеет значение не только количество получаемого человеком белка, но и его качественный состав, а именно соотношение заменимых и незаменимых аминокислот .

    • Незаменимыми являются 10 аминокислот, которые не синтезируются в организме человека, но вместе с тем абсолютно необходимы для нормальной жизнедеятельности. Отсутствие даже одной из них ведет к отрицательному азотистому балансу, потере массы тела и другим несовместимым с жизью нарушениям.
      • Незаменимыми аминокислотами являются валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, цистеин , незаменимыми условно аргинин и гистидин . Все эти аминокислоты человек получает только с пищей.
    • Заменимые аминокислоты также необходимы для жизнедеятельности человека, но они могут синтезироваться и в самом организме из продуктов обмена углеводов и липидов. К ним относятся гликокол, аланин, цистеин, глутаминовая и аспарагиновая кислоты, тирозин, пролин, серин, глицин ; условно заменимые аргинин и гистидин .
    • Белки, содержащие полный набор незаменимых аминокислот, называются полноценными и имеют максимальную биологическую ценность (мясо, рыба, яйца, икра, молоко, грибы, картофель ).
    • Белки в которых нет хотя бы одной незаменимой аминокислоты или если они содержатся в недостаточных количествах называются неполноценными (растительные белки ). В связи с этим для удовлетворения потребности в аминокислотах наиболее рациональной является разнообразная пища с преобладанием белков животного происхождения.
    • Суточная потребность в белках у взрослого человека составляет 80-100 г белка, в том числе 30 г животного происхождения, а при физических нагрузках — 130-150 г. Эти количества в среднем соответствуют физиологическому оптимуму белка — 1 г на 1 кг массы тела.
    • Животный белок пищи практически полностью превращается в собственные белки организма. Синтез же белков организма из растительных белков идет менее эффективно: коэффициент превращения составляет 0,6 - 0,7 по причине дисбаланса незаменимых аминокислот в животных и растительных белках.
    • При питании растительными белками , действует "правило минимума ", согласно которому синтез собственного белка зависит от незаменимой аминокислоты, которая поступает с пищей в минимальном количестве .

    После приема пищи, особенно белковой, отмечено повышение энергообмена и теплопродукции . При употреблении смешанной пищи энергообмен возрастает примерно на 6%, при белковом питании повышение может достигнуть 30-40% общей энергетической ценности всего введенного в организм белка. Повышение энергообмена начинается через 1-2 ч, достигает максимума через 3 ч и продолжается в течение 7 — 8 ч после приема пищи.

    Гормональная регуляция метаболизма белков обеспечивает обеспечивает динамическое равновесие их синтеза и распада.

    • Анаболизм белков контролируется гормонами аденогипофиза (соматотропин ), поджелудочной железы (инсулин ), мужских половых желез (адроген ). Усиление анаболической фазы метаболизма белков при избытке этих гормонов выражается в усиленном росте и увеличении массы тела. Недостаток анаболитических гормонов вызывает задержку роста у детей.
    • Катаболизм белков регулируется гормонами щитовидной железы (тироксин и трийодтиронон ), коркового (клюкокортикоиды ) и мозгового (адреналин ) вещества надпочечников. Избыток этих гормонов усиливает распад белков в тканях, что сопровождается истощением и отрицательным азотистым балансом. Недостаток гормонов, например, щитовидной железы сопровождается ожирением.

    Белки являются, безусловно, одними из важнейших компонентов в процессе жизнедеятельности организма. А главное, они играют чрезвычайно важную роль в питании человека, так как являются главной составной частью клеток всех органов и тканей организма. Недаром ведь в 2005 году по законопроекту, подготовленному Минздравсоцразвития, "в целях повышения качества питания в новой потребительской корзине предлагается увеличить объем продуктов, содержащих белок животного происхождения, одновременно сократив объем продуктов, содержащих углеводы".

    Cообщение # 3367, написанное 05-03-2014 в 14:52 МСК, удалено.

    # 1347 · 07-06-2013 в 12:37 МСК · ip адрес записан ·

    Белки усваиваются организмом только путем всасывания аминокислот в пищеварительном канале. Белок, введенный под кожу или непосредственно в кровь, вызывает защитную реакцию организма. Синтез белков из аминокислот и их соединений (полипептидов) происходит в клетках организма при участии ферментов в течение всей жизни. В детском и юношеском возрасте белки задерживаются в организме; эта задержка, или ретенция, белков обусловливает рост и развитие организма.

    У взрослого человека белки постоянно обновляются; в течение 2-3 суток примерно половина всех белков разрушается и такое же количество синтезируется из аминокислот, доставляемых пищей, а также образовавшихся при распаде белков (ресинтез). Неиспользованные аминокислоты распадаются в печени и почках с отщеплением молекулы аммиака (дезаминируются) и освобождением энергии. В печени аммиак синтезируется в мочевину, которая выводится из организма с мочой. Остаток молекулы аминокислоты, не содержащий азота, превращается в глюкозу, которая распадается, освобождая энергию. Кроме мочевины, белки распадаются на мочевую кислоту, креатин, креатинин, холин, гистамин и другие вещества.

    Содержание азота в белках равно в среднем 16% от их веса. Поэтому при умножении количества азота, поступившего в организм с пищей, на 6,25 можно установить количество белка, содержащегося в пище. А при умножении количества азота в кале, моче и поте, на 6,25 можно установить количество белка, которое после разрушения удалено из организма в виде продуктов его распада. Сравнение обоих количеств азота позволяет определить азотистый баланс организма, или соотношение количества белка, поступившего в организм, с количеством белка, удаленного из организма. Когда оба количества азота равны друг другу, имеется азотистое равновесие, которое характерно для взрослого человека. Азотистое равновесие у взрослого человека зависит от того, что белок, даже при увеличении его поступления с пищей, подвергается распаду и либо после дезаминирования превращается в углеводы и жиры, либо удаляется из организма в составе кала, мочи и пота в виде остаточных продуктов. Во взрослом организме запасы белка не создаются.

    У детей имеется положительный азотистый баланс, так как в растущем организме происходит ретенция белков и приход белков превышает их расход.

    При голодании, в результате уменьшения прихода белков, а также при действии на организм больших доз ионизирующего облучения вследствие увеличенного распада белков имеется отрицательный азотистый баланс, т. е. расход белка больше его прихода.


    Белки животного и растительного происхождения. Белки животного происхождения, находящиеся в мясе, яйцах и молоке, содержат все аминокислоты, необходимые для синтеза белка и роста организма: лизин, тирозин, триптофан, лейцин, изолейцин, гистидин, аргинин, валин, метионин, фенилаланин, глицин, аланин, серин, цистин, цистеин, треонин, аспарагин, аспарагиновую кислоту, глютаминовую кислоту, глютамин. Из аминокислот в организме образуются гормоны и ферменты. Белки, содержащие все аминокислоты, необходимые для синтеза белка, называются полноценными. Биологическая ценность белка определяется по количеству его, которое образовалось из 100 г белка пищи. Белки животного происхождения примерно в 1,5 более полноценные, чем растительные, но некоторые белки животного происхождения, например желатина, не содержащая триптофан и тирозин, являются неполноценными.

    Белки растительного происхождения, находящиеся в ржаном хлебе, картофеле, кукурузе, дрожжах, ячмене и других растительных продуктах, не могут считаться полноценными, так как в них отсутствуют одна или несколько аминокислот, которые не могут синтезироваться в организме или их очень мало. Например, в пшенице и ячмене мало лизина, в кукурузе мало лизина и триптофана. В белках растительного происхождения - недостаток лизина, триптофана и метионина. Некоторые аминокислоты могут заменить друг друга, например фенилаланин заменяет тирозин. Но из 20 природных аминокислот, содержащихся в белках, 10 не могут синтезироваться в организме: валин, лейцин, изолейцин, треонин, фенилаланин, лизин, метионин, гистидин, аргинин и триптофан. Отсутствие любой из этих 10 аминокислот нарушает здоровье. Например, лизин, цистин и валин возбуждают сердечную деятельность. Малое содержание цистина в пище задерживает рост волос, увеличивает содержание сахара в крови. Для полноценного питания рекомендуется концентрат трех дефицитных аминокислот: лизина, метионина и триптофана - белип, содержащий равные весовые части трески и пресного кальцинированного творога, полученного из цельного обезжиренного молока.

    Суточная потребность в белках. Общее количество белков, необходимых взрослому человеку в сутки при условии введения в организм достаточного количества жиров и углеводов, зависит главным образом от характера выполняемой физической работы, а также от температуры внешней среды. В среднем для взрослого человека суточная норма белка при смешанной пище в г на кг веса тела: при легкой физической работе 1-1,5, при работе средней тяжести 2, при тяжелой физической работе и в условиях длительного холода 3-3,5. Дальнейшее увеличение суточной нормы белка нецелесообразно, так как нарушает функции нервной системы, печени и почек. Белки должны составлять около 14% калорийности суточного рациона.

    Белки – это биологические гетерополимеры, мономерами которых являются аминокислоты — вещества, имеющие в своем составе неизменяемые части. В состав белков входят атомы углерода, кислорода, водорода, азота и иногда серы.

    Аминокислоты обладают свойствами кислоты и основания (они амфотерны), поэтому могут соединяться друг с другом. Их количество в одной молекуле может достигать нескольких сотен. Чередование разных аминокислот в разной последовательности позволяет получать огромное количество различных по структуре и функциям белков.

    Белки синтезируются в живых организмах и выполняют в них определенные функции. В белках встречается 20 видов различных аминокислот, некоторые из которых человек синтезировать не может, он получает их от растений, которые могут синтезировать все аминокислоты.

    Именно до аминокислот расщепляются белки в пищеварительном тракте. Из этих аминокислот, поступающих в клетки организма, строятся его новые белки.

    В любой клетке есть сотни белковых молекул, выполняющих различные функции. Кроме того, белки имеют видовую специфичность. Это означает, что каждый вид организмов обладает белками, не встречающимися у других видов. Это создает серьезные трудности при пересадке органов и тканей от одного человека к другому, при прививках одного вида растений на другой и т.д.

    Функции белков

    • Каталитическая (ферментативная) – белки ускоряют все биохимические процессы, идущие в клетке: расщепление питательных веществ в пищеварительном тракте, участвуют в реакциях матричного синтеза. Каждый фермент ускоряет одну и только одну реакцию (как в прямом, так и в обратном направлении). Скорость ферментативных реакций зависит от температуры среды, уровня ее рН, а также от концентраций реагирующих веществ и концентрации фермента.
    • Транспортная – белки обеспечивают активный транспорт ионов через клеточные мембраны, транспорт кислорода и углекислого газа, транспорт жирных кислот.
    • Защитная – антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь — белки принимают участие в свёртывании крови.
    • Структурная – одна из основных функций белков. Белки входят в состав ядер, цитоплазмы и клеточных мембран. Белок кератин образует волосы и ногти; белки коллаген и эластин – хрящи и сухожилия. Белки входят в состав костей.
    • Сократительная – обеспечивается сократительными белками – актином и миозином.
    • Сигнальная – белковые молекулы могут принимать сигналы и служить их переносчиками в организме (гормонами). Следует помнить, что не все гормоны являются белками.
    • Энергетическая – при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры. Белки способны к биологическому окислению с выделением энергии, которая может быть использована организмом.

    Роль белков

    Белки в организме выполняют в основном пластическую функцию. Они входят в состав ферментов, гормонов, регулируют различные процессы в организме, осуществляют защитные функции, определяют видовую и индивидуальную особенности организма. Кроме того, белки используют в качестве энергетического материала, недостаточное обеспечение ими приводит к потере внутренних белков.

    Белки участвуют в построении и обновлении клеток, ускоряют в них биохимические реакции. Белки - строители и ускорители. Белки - стимуляторы умственной деятельности.

    Если белков мало, страдает центральная нервная система, плохо работают железы внутренней секреции, печень, да и другие внутренние органы, падает иммунитет, мы неспособны долго работать ни физически, ни умственно. А молодой организм вообще может перестать расти, его общее развитие резко замедляется!

    Если белков слишком много - это тоже плохо! При этом происходят сбои в , в процессах возбуждения и торможения коры головного мозга.

    Источники белков:

    • Мясо, р ыба, грибы, яйца;
    • Сыр, м олоко, т ворог ;
    • Гречневая и овсяная крупы, р ис, фасоль;
    • Хлеб;
    • Орехи;
    • Горох, соя;
    • Картофель.

    Обмен белков

    В ходе подготовительной стадии обмена, пищевые белки, сначала расщепляются в желудке пепсином, а затем в двенадцатиперстной кишке ферментом поджелудочной железы трипсином до аминокислот. Аминокислоты через кровеносные капилляры ворсинок поступают в печень. Здесь избыточные аминокислоты теряют свой азот и превращаются в жиры и углеводы.

    В клетках из аминокислот строятся белки тела. В свою очередь аминокислоты являются не только источником синтеза новых структурных белков, ферментов, веществ гормональной, белковой, пептидной природы и других, но и источником энергии. Характеристика белков, входящих в состав пищи, зависит как от энергетической ценности, так и от спектра аминокислот.

    Белковый обмен направлен на использование и преобразование аминокислот белков в организме человека. Организму нужны не белки из пищи, как таковые, а содержащиеся в них аминокислоты.

    При переваривании пищи съеденные белки распадаются на аминокислоты, которые всасываются в кровь и из крови поступают в каждую клетку организма. Здесь они частично идут на строительство собственных белков, а частично сжигаются для получения АТФ.

    Уровень содержания аминокислот в крови регулирует печень. В печени происходит разложение излишка аминокислот. Из образовавшегося аммиака синтезируется мочевина, которая затем выводится почками и кожей.

    Остатки аминокислот используются, как энергетический материал, и преобразуются в глюкозу, избыток которой превращается в гликоген. В клетках белки распадаются до углекислого газа, воды, мочевины, мочевой кислоты и др. Они выводятся из организма.

    Белки используются в организме в первую очередь в качестве пластических материалов. Потребность в белке определяется тем его минимальным количеством, которое будет уравновешивать его потери организмом.

    Обновление и распад белка. Белки находятся в состоянии непрерывного обмена и обновления. В организме здорового взрослого человека количество распавшегося за сутки белка равно количеству вновь синтезированного. Скорость распада и обновления белков организма различна – от нескольких минут до 180 суток (в среднем 80 суток).

    При этом многие белки у одного и того же организма обновляются с разной скоростью. Намного медленнее обновляются мышечные белки. Белки плазмы крови у человека имеют период полураспада около 10 суток, а гормоны белково-пептидной природы живут всего несколько минут.

    Источником свободных аминокислот в первую очередь являются белки плазмы, ферментные белки, белки печени, слизистой оболочки кишечника и мышц, что позволяет длительное время поддерживать без потерь обновление белков мозга и сердца.

    У человека за сутки подвергаются разрушению и синтезу около 400 г белка. Причем около 70 % образовавшихся свободных аминокислот снова идет на синтез нового белка, около 30 % превращается в энергию и должно пополняться экзогенными аминокислотами из пищи.

    Десять аминокислот из 20 (валин, лейцин, изолейцин, лизин, метионин, триптофан, треонин, фенилаланин, аргинин и гистидин) в случае их недостаточного поступления с пищей не могут быть синтезированы в организме и называются незаменимыми. Другие десять аминокислот заменимы, так как могут синтезироваться в организме. Те и другие очень важны для организма.

    Белки, содержащие полный набор незаменимых аминокислот, называются биологически полноценными. В сутки в организм взрослого человека должно поступать с едой около 70-90 г белка (1 г на 1 кг массы тела), причем 30 г белка должно быть растительного происхождения.

    Из аминокислот, полученных в процессе пищеварения, синтезируются специфические для данного вида, организма и для каждого органа белки. Часть аминокислот используются как энергетический материал, т. е. подвергаются расщеплению.

    Азотистый баланс. О количестве белка, подвергшегося распаду за сутки, судят по количеству азота, выводимого из организма человека. В 100 г белка содержится 16 г азота. Таким образом, выделение организмом 1 г азота соответствует распаду 6,25 г белка.

    За сутки из организма взрослого человека выделяется около 3,7 г азота, т. е. масса разрушившегося белка составляет 3,7 х 6,25 = 23 г, или 0,028 – 0,075 г азота на 1 кг массы тела в сутки (коэффициент изнашивания Рубнера).

    Если количество азота, поступающего в организм с пищей, равно количеству азота, выводимого из организма, то организм находится в состоянии азотистого равновесия.

    Если в организм поступает азота больше, чем выделяется, то это свидетельствует о положительном азотистом балансе (ретенция азота). Он возникает при увеличении массы мышечной ткани (интенсивные физические нагрузки), в период роста организма, беременности, во время выздоровления после тяжелого заболевания.

    Состояние, при котором количество выводимого из организма азота превышает его поступление в организм, называют отрицательным азотистым балансом. Оно возникает при питании неполноценными белками, когда в организм не поступают какие-либо из незаменимых аминокислот, при белковом или полном голодании.

    Необходимо потребление не менее 0,75 г белка на 1 кг массы тела в сутки, что для взрослого здорового человека массой 70 кг составляет не менее 52,5 г полноценного белка. Для надежной стабильности азотистого баланса рекомендуется принимать с пищей 85 – 90 г белка в сутки.

    У детей, беременных и кормящих женщин эти нормы должны быть выше. Дети, которые растут, нуждаются в дополнительном количестве белков (4-5 г на 1 кг массы тела в сутки). Младшие школьники 6-7 лет в среднем должны употреблять до 70 г чистого белка в сутки, старше 7 лет — 75-80 г.

    Важно, чтобы дети получали только оптимальное количество полноценных белков. При излишках белковой пищи у детей исчезает аппетит, нарушается кислотно-щелочной баланс, увеличивается выведение азота с мочой и калом.

    Количество поступающего белка зависит и от выполняемой физической нагрузки. При средней нагрузке человек должен получать 100-120 г белка в сутки, а при тяжелой физической работе количество белка возрастает до 150 г.

    Разрушение белков в организме и выведение азота с мочой не прекращается даже при отсутствии белков в пище. При безбелковой диете за сутки разрушается примерно 331 мг собственных белков на 1 кг массы тела. Для человека с массой тела 70 кг это составляет 23.2 г и называется «коэффициентом износа».

    Таким образом, количество белков в составе пищи, необходимых для покрытия коэффициента износа за сутки в среднем составляет 23-25 г и называется белковым минимумом. Для нормального функционирования организма взрослых людей необходим белковый оптимум, который достигается при употреблении 100-110 г белка в сутки (при значительных физических нагрузках-до 130-140 г).

    Регуляция белкового обмена

    На регуляцию белкового обмена влияют нервная система, гормоны гипофиза (соматотропный гормон), щитовидной железы (тироксин), надпочечников (глюкокортикоиды).

    Центр регуляции белкового обмена расположен в гипоталамусе промежуточного мозга. Активность нейросекреторных клеток этого центра передается в гипофиз, а тот, в свою очередь, своими гормонами влияет на обмен веществ и на активность других желез.

    Так, например, соматотропный гормон гипофиза (гормон роста) задерживает белки (азот) в организме и стимулирует рост размеров и массы всех органов.

    Гормоны щитовидной железы (тироксин и трийодтиронин) стимулируют синтез белка и рост тканей. Гормоны надпочечников (гидрокортизон и кортикостерон) стимулируют синтез белков в печени и способствуют его распаду в мышечной и лимфоидных тканях, то есть регулируют обменные процессы.

    Пищевая ценность белка

    Пищевая ценность белка обеспечивается наличием незаменимых аминокислот, углеводородные скелеты которых не могут синтезироваться в организме человека, и они соответственно должны поступать с пищей. Они также являются основными источниками азота. Суточная потребность в белках 80–100г, половина из которых, должна быть животного происхождения.

    Потребность в белке – это количество белка, которое обеспечивает все метаболические потребности организма. При этом обязательно учитывается физиологическое состояние организма с одной стороны, а с другой стороны, свойства самих пищевых белков и пищевого рациона в целом. От свойств компонентов пищевого рациона зависит переваривание, всасывание и метаболическая утилизация аминокислот.

    Потребность в белке состоит из двух компонентов:

    • Первый должен удовлетворить потребность в общем азоте, обеспечивающем биосинтез заменимых аминокислот и других азотсодержащих эндогенных биологически активных веществ. Собственно потребность в общем азоте и есть потребность в белке.
    • Второй компонент определяется потребностью организма человека в незаменимых аминокислотах, которые не синтезируются в организме. Это специфическая часть потребности в белке, которая количественно входит в первый компонент, но предполагает потребление белка определенного качества, т.е. носителем общего азота должны быть белки, содержащие незаменимые аминокислоты в определенном количестве.

    Белки животного происхождения содержат полный набор незаменимых аминокислот. Однако, наряду с целым рядом преимуществ белки имеют и недостатки, главными из которых являются достаточно токсичные продукты катаболизма (аммиак, продукты гниения белков в толстом кишечнике) и довольно сложные пути метаболизма.